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SUMMARY 

The Australasian snapper (Chrysophrys auratus) is a promising candidate for aquaculture. In the 
snapper breeding programme at Plant and Food Research, identifying genetic variants associated 
with key economic traits is essential for optimising selective breeding. Using machine learning for 
phenotyping and to analyse genomic data, our work focuses on detecting single nucleotide 
polymorphisms (SNPs) that influence growth traits within the breeding programme. Our approach 
and resulting knowledge has the potential to accelerate breeding programmes and provide more 
efficient ways to improve broodstock quality and sustainability in aquaculture.  

 
INTRODUCTION 

Traditionally, genomic-informed breeding programmes have focused on using approaches such 
as GWAS to identify single nucleotide polymorphisms (SNPs) as markers for trait-associated genetic 
variation (Dekkers 2012). While these approaches have been invaluable for advancing selective 
breeding, relying on these approaches can miss the more complex genetic architecture of traits such 
as growth (Chafai et al. 2023). Machine learning approaches accounting for interactions between 
variants have shown promise in other breeding programmes, despite the problem of high-
dimensionality of genomic data (Feldner-Busztin et al. 2023). This kind of approach can facilitate 
the development of more robust and resilient aquaculture populations (Gill et al. 2022). 

To diversify and build resilience in the aquaculture sector in New Zealand, the Australasian 
snapper (Chrysophrys auratus) has been the focus of a two decade long selective breeding program 
(Samuels et al. 2024). This breeding program has demonstrated substantial advancements in growth 
rates, survival, and feed conversion ratios, marking significant progress toward optimising snapper 
for aquaculture (Moran et al. 2023; Samuels et al. 2024). 

Here, we apply computer vision and machine learning techniques to unlock genomic insights in 
snapper breeding. By cataloguing and integrating SNP variant data with extensive phenotypic data 
from 1,011 snapper in the F4 cohort of a long-term selective breeding programme, we conducted 
genome-wide association studies (GWAS) to identify variants associated with growth traits. We also 
evaluated whether we could also identify genetic variants for genomic prediction, employing 
XGBoost as a predictive model. Our findings provide a valuable framework for enhancing genomic 
selection in aquaculture and offer insights into the potential applications of machine learning in 
selective breeding programmes, with implications for improving resilience and sustainability in 
aquaculture and beyond. 

 
MATERIALS AND METHODS 

Genotype and phenotype data. At 3 months post-hatch, fish were manually measured for 
weight and fork length and imaged. The images were used to measure a further 13 phenotypes via 
an in-house computer vision pipeline (Figure 1a). Genetic data was generated using a SNP chip 
designed for use in snapper (Montanari et al. 2023). Overall, 1,011 F4 fish were included. After 
quality filtering, 11,006 SNPs were retained for analyses. For both the genotype and phenotype 
datasets, PCAs were performed using prcomp in R. PC1 of the phenotype data was also included as 
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a trait in the GWAS and genomic prediction. To infer family relationships, kmeans clustering was 
performed on a genetic relatedness matrix for all fish. 

GWAS and genomic prediction. FarmCPU was used for GWAS within rMVP. For genomic 
prediction, we used XGBoost trained on 80% of the fish, using the relatedness cluster assignments 
in the stratification step. We included the first two genetic PCs as covariates in the models. ML 
analyses were applied to three phenotypes- condition factor, weight, and the distance from the top 
lip to the eye. We included condition factor since it is a derived trait which considers weight and 
length. We included weight because it is a common target for breeding programmes, and distance 
between eye and top lip since this yielded the highest number of significant SNPs from the GWAS. 
Each model was tuned using tidymodels and Root Mean Squared Error (rmse) and R2 were recorded 
for both training and test data sets. 

 
RESULTS AND DISCUSSION 

Across all fish included, weight ranged from 7.46g to 45.19g, while fork length ranged from 
74.47mm to 123.03mm. Across the height measurements, the biggest variation was at the 75% of 
the length of the fish point, with 24.25mm difference between the minimum and maximum. Overall, 
traits were highly correlated with each other (Figure 1b), correlation coefficients ranged from 0.27 
(eye width vs. distance between the caudal peduncle and pectoral joint) to 1 (fork length vs distances 
between each lip and the tail fork, and distance between top lip and tail fork vs. distance between 
bottom lip and tail fork). For the phenotypes, 96.96% of the variance was explained by PC1 of the 
phenotypes. For this reason, PC1 was used also included as predictive trait for the GWAS and 
XGBoost model. 

Overall, 24 SNPs were identified by the GWAS (e.g. Figure 2) as being involved in the 15 
phenotypes and phenotype PC1. Of these, 8 were shared between at least two traits, and 16 were 
unique to the trait they were identified in. Significant SNPs were across 14 chromosomes in the 
snapper genome and found to overlap with genes potentially involved in growth via metabolic 
pathways and even appetite signalling. 

The machine learning models were found to be moderately accurate on the training data, but less 
so on the testing data (Table 1), suggesting that the high dimensionality of the SNP data is leading 
to overfitting. This was not addressed by reducing the number of input SNPs by random selection 
or by ranking SNPs by GWAS p-value (data not shown). Together, this suggests that the dataset is 
prone to overfitting and would benefit from the addition of additional fish samples. 

 
Table 1. Residual mean squared error and R2 statistics for XGBoost models on the test and 
train datasets for three selected traits 
  

Trait rmse train R2 train rmse test R2 test 
Condition factor 0.1 0.671 0.132 0.241 
Weight 3.94 0.71 5.97 0.146 
Top lip to eye (mm) 0.221 0.975 0.965 0.0675 
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Figure 1. A) An output of the computer vision phenotyping pipeline showing the contours of 
fish body parts (orange) and landmarks (white points) used for each of the 13 measurements 
gathered by this pipeline (purple). The labelled points indicate landmarks used for measurements 
from the computer vision pipeline. Landmarks are 1- bottom lip, 2- top lip, 3 and 5- the left and right 
edges of the eye respectively, 4- centre of the eye, 6 and 14- top and bottom of the fish at 25% of its 
total length respectively, 7 and 13- top and bottom of the fish at 50% of its total length respectively, 
8 and 12- top and bottom of the fish at 75% of its total length respectively, 9- peduncle, 10- tail fork, 
11- total length end point. B) Correlation matrix of all 15 measured traits in this study. The colour 
and shape of each ellipse represents the R2 value for that correlation (written in the corresponding 
box for each correlation). R2 values were only included where p-values were < 0.05. 

b) 
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Figure 2. Manhattan plot showing SNPs significantly associated with weight in snapper. The 
heatmap along the bottom of the figure shows SNP density across the genome. 
.  
CONCLUSION 

Including traditional genomic selection methods in our breeding program has already seen large 
gains in growth phenotypes, and while high dimensionality still hampers the machine learning 
approach for genomic prediction, applying more sophisticated statistical methods would allow us to 
consider the genetic, and eventually environmental interactions in complex traits. Future work will 
investigate similar analyses on other traits, such as internal organ measurements and look to increase 
the size of the data set used for the machine learning approach. 
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